Covariance (๊ณต๋ถ์ฐ)
๋๊ฐ์ ํ๋ฅ ๋ณ์์ ๋ํ Joint distribution์ด ์ฃผ์ด์ก์ ๋, ๋ ํ๋ฅ ๋ณ์๊ฐ ์ผ๋ง๋ ์๋ก์๊ฒ ์์กด์ ์ธ์ง ๋ํ๋ ๋๋ค.
ํ๋ฅ ๋ณ์ X, Y๊ฐ ์ ํํ ๊ฐ์ ๊ฐ์ง๋ ํ๊ท M_X์ M_Y๋ฅผ ๊ฐ์ง ๋,
X์ Y์ ๋ํ Covariance(๊ณต๋ถ์ฐ)๋ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$Cov(X,Y) = E((X-M_X)(Y-M_Y))$$
๋ง์ฝ X์ Y์ ๋ถ์ฐ(variance)์ด bounded(finite, ์ ํ)ํ๋ค๋ฉด, X์ Y์ Covariance(๊ณต๋ถ์ฐ)์ธ Cov(X, Y)๋ํ boundedํฉ๋๋ค.
๋ํ ์ ์์ ํตํด ๋ค์์ ์ ๋ํ ์ ์์ต๋๋ค.
X์ Y๊ฐ finiteํ ๋ถ์ฐ(variance)์ ๊ฐ์ ๋,
$$Cov(X, Y) = E(XY) - E(X)E(Y)$$
์ด์ ๋ํ ์ฆ๋ช ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
X์ ๋ํ ํ๊ท E(X)๋ฅผ M_X๋ผ ํ๊ณ , Y์ ๋ํ ํ๊ท E(Y)๋ฅผ M_Y๋ผ ํ๋ฉด,
$$Cov(X, Y) = E((X-M_X) (Y-M_Y))$$
$$= E(XY - XM_Y -YM_X + M_XM_Y)$$
$$=E(XY) - M_YE(X) - M_XE(Y) + M_XM_Y$$
$$=E(XY) - M_YM_X - M_XM_Y + M_XM_Y$$
$$= E(XY) - M_XM_Y$$
Covariance๋ฅผ ๊ตฌํ๋ ํ๋์ ์์๋ฅผ ์ดํด๋ณด๋๋ก ํ๊ฒ ์ต๋๋ค.
์ฐ์ํ๋ฅ ๋ณ์ X, Y์ ๋ํด, joint p.d.f์ธ f๊ฐ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$f(x, y) = \left\{\begin{matrix}
2xy + \frac{1}{2} & 0\leq x \leq 1 \;\;and\;\; 0 \leq y\leq 1 \\
0& otherwise\\
\end{matrix}\right.$$
์ด๋ X์ Y์ Covariance์ธ Cov(X,Y)๋ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$M_X = \int_{0}^{1}x \cdot \int_{0}^{1} f(x,y)dy dx $$
$$= \int_{0}^{1} x \cdot (x+ \frac{1}{2})dx \;\;\;\; since \; \int_{0}^{1}f(x,y)dy = \int_{0}^{1}2xy + \frac{1}{2}dy = \left [ xy^{2} + \frac{1}{2}y\right ]^{1}_0$$
$$= \left [ \frac{1}{3}x^{3} + \frac{1}{4}x^{2} \right ]^{1}_0 = \frac{7}{12}$$
๋ํ X์ Y๋ ๋์นญ(Symmetric)์ด๋ฏ๋ก,
$$MY = \frac{7}{12}$$
๋ฐ๋ผ์
$$Cov(X, Y) = E((X-\frac{7}{12})(Y-\frac{7}{12}) )$$
$$\overset{\underset{\mathrm{LOTUS}}{}}{=} \int_{0}^{1}\int_{0}^{1}(x - \frac{7}{12})(y - \frac{7}{12})(2xy + \frac{1}{2})dxdy = \frac{1}{144}$$
Correlation Coefficient (์๊ด๊ณ์)
finiteํ variance๋ฅผ ๊ฐ๋ X์ Y์ ๋ํ Correlation Coefficient๋ ๊ณต๋ถ์ฐ์ ๊ฐ๊ฐ์ ํ์คํธ์ฐจ์ ๊ณฑ์ผ๋ก ๋๋์ด ์ค ๊ฒ์ผ๋ก, ๋ค์๊ณผ ๊ฐ์ด ์ ์๋ฉ๋๋ค.
$$\rho(X, Y) = \frac{Cov(X,Y)}{\sigma_X\sigma_Y}, \;\;\;\;\; \sigma_X^{2} = Var(X), \;\sigma_Y^{2} = Var(Y)$$
Correlation Coefficient๋ -1~1์ฌ์ด์ ๊ฐ์ ๊ฐ์ง๊ฒ ๋๋๋ฐ, ๊ทธ์ ๋ํ ์ฆ๋ช ์ ์๋์ ๊ฐ์ต๋๋ค.
์ฝ์-์๋ฐ๋ฅด์ธ ์ ๋ถ๋ฑ์์ ์ํด
$$Cov(X,Y)^{2} \leq \sigma_X^{2}\cdot \sigma_Y^{2}$$
์ด๋ฉฐ ๋ฐ๋ผ์,
$$\frac{(Cov(X,Y))^{2}}{\sigma_X^{2}\sigma_Y^{2}} \leq 1$$
$$\Rightarrow -1 \leq \rho(X, Y) \leq 1 $$
์ด๋
ρ(X, Y) > 0 ์ธ ๊ฒฝ์ฐ positive correlated (X๊ฐ ์ฆ๊ฐํ๋ฉด Y๋ ์ฆ๊ฐ)
ρ(X, Y) = 0 ์ธ ๊ฒฝ์ฐ uncorrelated (์ฐ๊ด ์์)
ρ(X, Y) < 0 ์ธ ๊ฒฝ์ฐ negative correlated (X๊ฐ ์ฆ๊ฐํ๋ฉด Y๋ ๊ฐ์)
๊ณต๋ถ์ฐ๊ณผ ์๊ด๊ณ์์ ์์ฑ
1. ๋ง์ฝ X, Y๊ฐ Independent์ด๋ฉฐ, X์ ๋ถ์ฐ๊ณผ Y์ ๋ถ์ฐ ๋ชจ๋ ์ ํ(finite)ํ ๋,
$$Cov(X, Y) = 0$$
๊ทธ๋ฌ๋ Covariance๊ฐ 0์ด๋ผ๊ณ ํด์ ๋ฐ๋์ Independent์ธ ๊ฒ์ ์๋๋๋ค.
์ด์ ๋ํ ์ฆ๋ช ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$Cov(X, Y) = E(XY) - E(X)E(Y)$$
$$= E(X)E(Y) - E(X)E(Y) \;\;\;\; since \;\;\; X,Y \;are \; independent$$
2. X๋ finiteํ ๋ถ์ฐ์ ๊ฐ์ง ํ๋ฅ ๋ณ์์ด๋ฉฐ, Y = aX + b์ผ ๋,
$$if \left\{\begin{matrix}
a>0 & then\;\; \rho(X,Y)=1\\
a<0 & then\;\; \rho(X,Y)=-1\\
\end{matrix}\right.$$
์ด์ ๋ํ ์ฆ๋ช ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$M_X=E(X), \;\;\;\; M_Y=E(aX+b) = aM_X + b$$
๋ผ๊ณ ํ๋ฉด,
$$Cov(X, Y) = \sigma_{XY}= E((X-M_X)(Y-M_Y)) = E((X-M_X)(aX+b- (aM_X + b)))$$
$$=aE\left [ (X-M_X)^{2} \right ] = a\sigma^{2}_X$$
๋ํ Y์ ๋ํ ๋ถ์ฐ์, ๋ถ์ฐ์ ํน์ฑ์ ์ด์ฉํ๋ฉด ๋ค์๊ณผ ๊ฐ์ผ๋ฏ๋ก,
$$\sigma_Y^{2} = a^{2}\sigma^{2}_X$$
$$\sigma_Y= |a|\sigma_X$$
์ ๋ ์์ ์ด์ฉํ์ฌ, ๊ณต๋ถ์ฐ(Covariance)์ ๊ตฌํ๋ฉด ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$\rho_{XY} = \frac{a\sigma_X^{2}}{\sigma_X\sigma_Y}= \frac{a\sigma_X^{2}}{\sigma_X|a|\sigma_X}= \frac{a}{|a|}$$
๋ฐ๋ผ์
$$\rho(X, Y) = \frac{a}{|a|} = \left\{\begin{matrix}
1& a>0\\
-1& a<0\\
\end{matrix}\right.$$
3. X, Y๊ฐ finiteํ ๋ถ์ฐ์ ๊ฐ์ง ๋
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$
์ด์ ๋ํ ์ฆ๋ช ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$Var(X+Y) = E( \;( (X+Y) - (M_X + M_Y) )^{2}\; )$$
$$= E((X-M_X)^{2} + 2(X - M_X)(Y-M_Y) + (Y-M_Y)^{2} )$$
์ด๋
$$ E((X-M_X)^{2}) = Var(X)$$
$$ E((Y-M_Y)^{2}) = Var(Y)$$
$$ E((X - M_X)(Y-M_Y) ) = Cov(X, Y) $$
์ด๋ฏ๋ก
$$= Var(X) + Var(Y) + 2Cov(X, Y)$$
๋ํ ์ด๋ฅผ ํตํด ๋ค์์ด ์ฑ๋ฆฝํจ์ ์ ์ ์์ต๋๋ค.
$$Var(aX + bY + c) = Var(aX + bY)$$
$$=a^{2}Var(X) + b^{2}Var(Y) +2Cov(aX, bY)$$
$$=a^{2}Var(X) + b^{2}Var(Y) +2abCov(X, Y)$$
4. X1, X2, ... Xn ์ด ๊ฐ๊ฐ finiteํ ๋ถ์ฐ์ ๊ฐ์ง ๋,
$$Var(\sum_{i=1}^{n}X_i) = \sum_{i=1}^{n}Var(X_i) + 2\sum^{}_{i=1} \sum^{}_{j=1}Cov(X_i, X_j), \;\;\;\; only (i<j) $$
์ด์ ๋ํ ์ฆ๋ช ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
$$Cov(X,X) = E((X-M_X)^{2}) = Var(X)$$
์ด๋ฉฐ,๋ฐ๋ผ์
$$Var(\sum_{i=1}^{n}X_i) = Cov(\sum_{i=1}^{n}X_i, \sum_{j=1}^{n}X_j) $$
์ ๋๋ค.
์ด๋ ๋ค์์ ๊ฐ์ ํ๋ฉด,
$$E(X_i) = u_i, \;\; E(Y_j) = v_j$$
$$E(\sum^{n}_{i=1}X_i) = \sum^{n}_{i=1}u_i, \;\;\;E(\sum^{n}_{j=1}Y_j) = \sum^{n}_{j=1}v_j$$
์ด๋ฉฐ, ๋ฐ๋ผ์ Covariance์ ์ ์๋ฅผ ์ฌ์ฉํ๋ฉด
$$Cov(\sum_{i=1}^{n}X_i, \sum_{j=1}^{n}Y_j) = E\left [ (\sum_{i=1}^{n}X_i - \sum_{i=1}^{n}u_i) (\sum_{j=1}^{n}Y_j - \sum_{j=1}^{n}v_j)\right ]$$
$$= E\left [ \sum_{i=1}^{n}(X_i - u_i)\sum_{j=1}^{n}(Y_j - v_j) \right ]
= E\left [ \sum_{i=1}^{n}\sum_{j=1}^{m}(X_i - u_i)(Y_j - v_j) \right ] $$
$$=\sum_{i=1}^{n}\sum_{j=1}^{m}E[(X_i - u_i)(Y_j - v_j)] = \sum_{i=1}^{n}\sum_{j=1}^{m}Cov(X_i, Y_j)$$
๋ฐ๋ผ์ ์์์ ์ฆ๋ช ํ ์ฑ์ง์ ์ด์ฉํ์ฌ,
$$Cov(\sum_{i=1}^{n}X_i, \sum_{j=1}^{n}X_j) $$
๋ฅผ ๋ค์๊ณผ ๊ฐ์ด ๋ฐ๊ฟ ์ ์์ต๋๋ค.
$$ = \sum_{i=1}^{n}\sum_{j=1}^{m}Cov(X_i, X_j)$$
์ด๋ i=j์ผ ๋์ ๊ทธ๋ ์ง ์์ ๋, ๋ ๊ฐ์ง ๊ฒฝ์ฐ๋ก ๋๋ ์ ์์ต๋๋ค.
$$= \sum\sum Cov(X_i, X_j), \;\; when\;\; i = j \;\;\;+ \sum\sum Cov(X_i, X_j), \;\; when\;\; i \neq j$$
์ด๋
$$\sum\sum Cov(X_i, X_j) = \sum^{n}_{i=1}Var(X_i)\;\; when\;\; i = j$$
์ด๋ฉฐ,
$$Cov(X, Y) = Cov(Y, X)$$
๋ ํญ์ ์ฑ๋ฆฝํ๋ฏ๋ก,
$$\sum\sum Cov(X_i, X_j)\;\; (when\;\; i \neq j)\;\; = 2\sum Cov(X_i,X_j)\;\; \;(when\;\; i < j)$$
Covariance์ ์์ฑ์ ๋ํ ์ฐธ๊ณ
https://www.probabilitycourse.com/chapter5/5_3_1_covariance_correlation.php
Covariance | Correlation | Variance of a sum | Correlation Coefficient:
5.3.1 Covariance and Correlation Consider two random variables $X$ and $Y$. Here, we define the covariance between $X$ and $Y$, written $\textrm{Cov}(X,Y)$. The covariance gives some information about how $X$ and $Y$ are statistically related. Let us provi
www.probabilitycourse.com
http://www.stat.ucla.edu/~nchristo/statistics100C/stat100c_var_cov_operations.pdf