[νλ₯ κ³Ό ν΅κ³] - (4) λ€μ€ νλ₯ λ³μμ κ²°ν©λΆν¬, μ£Όλ³λΆν¬(Joint distribution, marginal distribution)
Multiple Random Variables
μ§κΈκΉμ§λ νλμ νΉμ ν νλ₯ λ³μ(RV)μ λν νλ₯ μ΄ μΌλ§κ° λλμ§λ§ ꡬν΄λ³΄μμ΅λλ€.
λν pdf(Probability Density Function)μμλ XλΌλ RVμ κ°μ΄ νΉμ ν¨ λ²μ μμ λ€μ΄μμ νλ₯ μ ꡬνμμ΅λλ€.
κ·Έλ¬λ μ΄λ²μλ νλ₯ λ³μκ° 2κ°μΈ κ²½μ°μ λν΄μμ νλ₯ μ λν΄μ μμλ³΄κ² μ΅λλ€.
Joint distribution (κ²°ν©λΆν¬)
2κ° μ΄μμ νλ₯ λ³μ(multiful r.v.s)μ μν λΆν¬μ λλ€.
X, YλΌλ λκ°μ νλ₯ λ³μκ° μμ λ, Xμ Yμ κ²°ν©λΆν¬λ λ€μκ³Ό κ°μ΅λλ€.
$$P(X = x_1, Y = y_1)$$
μ΄λ¬ν κ²½μ° Sample Space(ν본곡κ°)λ Xκ° μ μλ Sample Spaceμ Yκ° μ μλ Sample Spaceμ μΉ΄ν μμ κ³±(μ¦ μμμ)μΌλ‘ νμ₯λ©λλ€.
λ°λΌμ Sample Spaceκ° νμ₯λκΈ°μ, νλ₯ λ³μμ μΉμλ Xμ Yμ μΉμμ μΉ΄ν μμ κ³±μΌλ‘ νμ₯λ©λλ€.
μ°μ μ¬λ¬κ°μ νλ₯ λ³μ(r.v.s)μ λν CDFλ₯Ό μμ보λλ‘ νκ²μ΅λλ€.
marginal distribution (μ£Όλ³λΆν¬)
μ¬λ¬κ°μ νλ₯ λ³μλ‘ μ΄λ£¨μ΄μ§ Joint c.d.fλ p.d.f, p.m.fκ° μμ λ κ°κ°μ λ³μ νλνλμ λν c.d.f, p.d.f λλ p.fμ Marginal μ΄λΌλ λ¨μ΄λ₯Ό λΆμ¬μ ννν©λλ€.
λν Marginal Distributionμ ꡬνκ³ μΆμ κ²½μ°, ꡬνκ³ μΆμ λ³μ μ΄μΈμ λ€λ₯Έ κ°μ λͺ¨λ κ²½μ°λ₯Ό λ€ κ³ λ €ν΄μ€λ€λ©΄ ꡬνκ³ μΆμ λ³μμ λν dritributionμ ꡬν μ μμ΅λλ€.
μλ₯Ό λ€μ΄ Joint c.d.f μΈ κ²½μ°
$$F_x(x) = F_{xy}(x, \infty)$$
$$F_y(y) = F_{xy}(\infty, y)$$
Joint Cumulative Distribution Function (Joint CDF, κ²°ν© λμ λΆν¬ν¨μ)
Joint CDFλ₯Ό λ€μκ³Ό κ°μ΄ νννκ² μ΅λλ€.
$$F_{xy}(x, y)\overset{\underset{\mathrm{def}}{}}{=}P(X\leq x, Y \leq y)$$
μ΄κ²(cdf)μ΄ μλ―Ένλ κ²μ μλ νμλ λΆλΆμ μμμ x, y μ’νκ° λ€μ΄μ€κ² λ νλ₯ μ λλ€.
Joint CDFμ νΉμ§λ€μ μμ보λλ‘ νκ² μ΅λλ€.
Properties of Joint CDF
1) CDFλ νλ₯ μ΄κΈ° λλ¬Έμ μλκ° μ±λ¦½ν©λλ€.
$$ 0\leq F_{xy}(x, y)\leq 1 $$
2) Joint CDFλ non-decreasing surfaceμ λλ€. λ°λΌμ
$$for \quad x_1 < x_2, \; y_1 < y_2 $$
$$ F_{xy}(x_1, y_1) \leq F_{xy}(x_1, y_2) \leq F_{xy}(x_2, y_2)$$
$$ F_{xy}(x_1, y_1) \leq F_{xy}(x_2, y_1) \leq F_{xy}(x_2, y_2)$$
(surfaceλΌκ³ ννν κ²μ functionμ΄λΌ ννν κ²½μ° κ³‘μ λ±μ μκ°ν κ²μ΄κΈ° λλ¬Έμ, μ΄λ₯Ό λͺ νν νκΈ° μν΄ surfaceλΌκ³ νννμμ΅λλ€. RVκ° 1κ°μΌ λλ CDFλ 곑μ μΌλ‘ ννλμ§λ§, RVκ° 2κ°μΌ κ²½μ° CDFλ 곑면μΌλ‘ ννλ©λλ€.)
μλλ μ΄ν΄λ₯Ό λκΈ° μν Joint CDFμ κ·Έλ¦Όμ λλ€.
$$3) \;\;\; \displaystyle \lim_{ {x\to \infty \; y\to \infty}}F_{xy} = P(X\leq \infty , Y\leq \infty) = 1$$
$$4) \;\;\;\displaystyle \lim_{ {x\to -\infty }}F_{xy} = P(X\leq -\infty , Y\leq y) = 0$$
$$\displaystyle \lim_{ {y\to -\infty }}F_{xy} = P(X\leq x , Y\leq -\infty) = 0$$
$$5) \;\;\;P(x_1 < X \leq x_2,\; Y\leq y)$$ μ μμ μλ λ©΄μ μ λμ΄λ₯Ό ꡬνλ κ²μ λλ€.
μ¦ λ€μκ³Ό κ°μ΅λλ€.
$$F_{xy}(x_2, y) - F_{xy}(x_1, y)$$
$$6) \;\;\;P(x_1 < X \leq x_2,\; y_1<Y\leq y_2)$$ μ μμ μλ μ£Όν©μ λΆλΆμ λ©΄μ μ λμ΄λ₯Ό ꡬνλ κ²μ λλ€.
(μ¬μ€ λΆνΌλ₯Ό ꡬνλ κ²μ΄λ, μ’ λ νΈνκ² μ΄ν΄νκΈ° μν΄ νλ©΄μΌλ‘ κ·Έλ Έμ΅λλ€.)
μ¦ λ€μκ³Ό κ°μ΅λλ€.
$$F_{xy}(x_2, y_2) - F_{xy}(x_1, y_2)- F_{xy}(x_2, y_1) + F_{xy}(x_1, y_1)$$
marginal CDF
Joint CDFμ λν΄μ λ€λ₯Έ λ³μλ₯Ό 무νλλ‘ λ³΄λ΄λ²λ¦¬λ©΄(μ¦ λͺ¨λ 쑰건μ λ€ μκ°νλ€λ©΄) λλ¨Έμ§ λ³μμ λν marginal CDFλ₯Ό μ»μ μ μμ΅λλ€.
$$F_x(x) = F_{xy}(x, \infty)$$
$$F_y(y) = F_{xy}(\infty, y)$$
Joint Probability Mass Function (Joint p.m.f , p.f)
2κ°μ Discrete Random Variablesμ λν νλ₯ λΆν¬ μ¦ Joint Probability Mass Functionμ λ€μκ³Ό κ°μ΄ μ μλ©λλ€.
$$\forall{(x, y) \in R^{2} } , \;\;\; f(x,y) = P(X=x \;and \; Y = y)$$
X = x μΈ κ²½μ°μ νλ₯ κ³Ό Y = yμΈ κ²½μ°μ νλ₯ μ ꡬν΄μ κ³±νλ©΄ λμ§ μμκΉλ μκ°μ ν μλ μλλ°, μ΄λ Independentν μν©μμλ§ μ±λ¦½νλ©°, μΌλ°μ μΌλ‘λ μ±λ¦½νμ§ μμ΅λλ€.
Properties of Joint PMF
1)λ§μ½ (X , Y)κ° μμμ (x, y)λ₯Ό κ°μ§ μλλ€λ©΄, ν΄λΉ νλ₯ μ 0μ λλ€.
$$if\;\; (X, Y)\;\; cannot \;\; have \;\; a \;\; ordered\;\; pair\;\; (x,y) \;\; then \;\;f(x, y) = 0 $$
2) λͺ¨λ (X, Y) μμμμ νλ₯ μ λν κ°μ 1μ λλ€.
$$\sum_{x}^{}\sum_{y}^{} P_{xy}(x,y)=1$$
3) νλ₯ μ΄λ―λ‘ 0κ³Ό 1 μ¬μ΄μ κ°μ κ°μ§λλ€.
$$0\leq p_{xy}(x, y)\leq 1$$
4)λμ λΆν¬ν¨μλ λ€μκ³Ό κ°μ΄ ꡬν©λλ€.
$$F_{xy}(x,y) = P(X \leq x, Y \leq y) = \sum_{X\leq x}^{}\sum_{Y\leq y}^{}P_{xy}(x,y)$$
marginal PMF
$$P_x(x)=\sum_{y}^{}P_{xy}(x,y)$$
$$P_y(y)=\sum_{x}^{}P_{xy}(x,y)$$
Independent μΈ κ²½μ°
$$P_{xy}(x, y)=P_x(x) P_y(y)$$
Joint Probability Density Function (Joint p.d.f)
μλμ κ°μ μμ΄ μλ ν¨μ fλ₯Ό κ°μ§ λ, Xμ Yλ continuous joint distribution λ₯Ό κ°μ§λ€κ³ ν©λλ€.λλ€.
$$P((X,Y) \in C \subset R^{2}) = \int_{C} \int f(x, y) dxdy$$
κ·Έλ¦¬κ³ μ΄λμ fλ₯Ό joint probability density function (joint p.d.f)λΌκ³ ν©λλ€.
PDFλ CDFλ₯Ό λ―ΈλΆνλ©΄ ꡬν μ μμμ΅λλ€. λ°λΌμ
$$f_{xy}(x,y) \overset{\underset{\mathrm{def}}{}}{=} \frac{\partial^{2} F_{xy}(x,y)}{\partial x \partial y }$$
λν CDFλ PDFλ₯Ό μ λΆνλ©΄ ꡬν μ μμΌλ―λ‘
$$F_{xy}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{xy}(u ,v)dudv$$
Properties of Joint PDF
1) x y νλ©΄μ λͺ¨λ κ°κ°μ ν μ (point)μμμ νλ₯ μ 0μ λλ€.
2)(x, y)κ° νλ©΄μ΄ μλ νλμ μ§μ μμ μ‘΄μ¬ν κ²½μ°, μ΄μ λν νλ₯ μ 0μ λλ€.
$$when \;\; C = \left\{ (x, y) | y =f(x) \right\} \;\; or \;\; C = \left\{ (x, y) | x =f(y)\right\} $$
$$then \;\; \int \int f(x, y)dxdy = 0$$
3) νλ₯ μ΄λ―λ‘ λ€μμ΄ μ±λ¦½ν©λλ€.
$$)1 \geq f(x, y ) \geq 0$$
4) λͺ¨λ κ²½μ°μ νλ₯ μ λ€ λν κ°μ 1μ λλ€.
$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{xy}(x, y)dxdy = 1 = F_{xy}(\infty, \infty)$$
5) (X, Y)κ° νΉμ ꡬκ°μ μ‘΄μ¬ν νλ₯ μ λ€μκ³Ό κ°μ΄ ꡬν©λλ€.
$$P(x_1 < X\leq X_2, y_1< Y\leq y_2) = \int_{y_1}^{y_2}\int_{x_1}^{x_2}f_{xy}(x,y)dxdy$$
$$= F_{xy}(x_2, y_2)-F_{xy}(x_1, y_2) - F_{xy}(x_2, y_1) + F_{xy}(x_1, y_1)$$
λν μ΄κ³³μμ μ΄μ€μ λΆμ λΆνΌλ₯Ό ꡬνλ κ²μ μλ―Έν©λλ€
marginal PDF
$$f_x(x) = \int_{-\infty}^{\infty} f_{xy}(x, y) dy$$
$$f_y(y) = \int_{-\infty}^{\infty}f_{xy}(x,y)dx$$
Independent μΈ κ²½μ°
$$f_{xy}(x, y) =f_x(x)f_y(y)$$
λν xμ yμ λ²μκ° unboundedν κ²½μ°(x >=0, y>=0),
$$f(x, y) = h(x)\cdot h(y)$$ μΌλ,
h(x)λ μ€μ§ xμ μν΄μλ§ μν₯μ λ°κ³ , h(y)λ yμ μν΄μλ§ μν₯μ λ°μΌλ―λ‘,
Xμ Yλ independent ν©λλ€.
μμ
1κ°μ λμ μ 3λ² λμ§λ€κ³ κ°μ ν΄ λ³΄κ² μ΅λλ€.
X : 맨 μ²μ λμ μ΄ Hκ° λμ€λ©΄ 1, Tκ° λμ€λ©΄ 0
Y : μ΄ Hκ° λμ¨ νμ
μ΄λ λ€μκ³Ό κ°μ΅λλ€.
$$P_x(0) = \frac{1}{2}, \; P_x(1) = \frac{1}{2}, \;\;P_y(0) = \frac{1}{8}, \; P_y(1) = \frac{1}{4}, \;\;P_y(2) = \frac{1}{4}, \; P_y(3) = \frac{1}{8},$$
X |Y | 0 | 1 | 2 | 3 |
0 | P(0, 0) = 1/8 | P(0, 1) = 2/8 | P(0, 2) = 1/8 | 0 |
1 | 0 | P(1, 1) = 1/8 | P(1, 2) = 2/8 | P(1, 3) = 1/8 |
$$\sum_{x=0}^{1}P_x(x) = 1$$
$$\sum_{y=0}^{3}P_y(y) = 1$$
$$\sum_{y=0}^{3}\sum_{x=0}^{1}P_{xy}(x,y) = 1$$
μΆκ°λ‘ joint probability λ‘λΆν° Xμ λν marginal probabilityλ₯Ό ꡬν΄λ³΄κ² μ΅λλ€.
$$P_x(0) = \sum_{y=0}^{3}P_{xy}(0, y ) = \frac{1}{2}$$
$$P_y(2) = \sum_{x=0}^{1}P_{xy}(x, 2 ) = \frac{3}{8}$$
μΆκ°λ‘ Independentμ μ¬λΆλ₯Ό ꡬν΄λ³΄κ² μ΅λλ€.
$$P_{xy}(0, 2) = \frac{1}{8} $$
$$P_x(0)P_y(2) =\frac{1}{2} * \frac{3}{8} = \frac{3}{16} \neq P_{xy}(0, 2) $$
λ°λΌμ Xμ Yλ Independentκ° μλλλ€.
2λ²
$$P_{xy}(x,y)= k(2x+y)$$
μ λν΄,
x = 1,2
y = 1,2
μ΄λ€.
μ΄λ k, marginal Prob, Independent μ¬λΆλ₯Ό ꡬν΄λ³΄κ² μ΅λλ€.
$$\sum_{x=1}^{2}\sum_{y=1}^{2}k(2x+y) = 1$$
μ΄λ―λ‘,
k(3 + 4 + 5 + 6) = 1μ΄λ©°, λ°λΌμ
$$ k = \frac{1}{18}$$
marginal Probλ λ€μκ³Ό κ°μ΅λλ€.
$$P_x(x) = \sum_{y=1}^{2}\frac{1}{18}(2x + y) = \frac{1}{18}(4x+3)$$
$$P_y(y) = \sum_{x=1}^{2}\frac{1}{18}(2x + y) = \frac{1}{18}(2y+6)$$
Independent μ¬λΆλ λ€μκ³Ό κ°μ΅λλ€
$$\frac{1}{18}(2x+y) \neq \frac{1}{18}(4x+3) * \frac{1}{18}(2y+6)$$
μ΄λ―λ‘ Independentνμ§ μμ΅λλ€.